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We have performed high-resolution numerical simulations of supersonic slip surfaces 
to confirm and illuminate earlier analytic nonlinear stability calculations of such 
structures. This analytic work was in turn inspired by earlier computer simulations 
reported in Woodward (1985) and Woodward et al. (1987). In particular Artola & 
Majda (1987) examined the response of a supersonic slip surface to an incident train 
of small-amplitude nonlinear sound waves. They found analytic solutions which 
indicate that nonlinear resonance occurs at three angles of incidence which depend 
upon the Mach number of the relative motion. The two-dimensional simulations 
described here numerically solve this problem for a Mach-4 flow using the piecewise- 
parabolic method (Colella & Woodward 1984; Woodward & Colella 1984). The 
simulations show that sound waves incident a t  a predicted resonance angle excite 
nonlinear behaviour in the slip surface. At  these angles the amplitude of the reflected 
waves is much greater than the incident wave amplitude (i.e. a shock forms). The 
observed resonance is fairly broad, but the resonance narrows as the strength of the 
incident waves is reduced. 

The nature of the nonlinear kink modes observed in the simulations is similar to 
that discussed by Artola & Majda. Most of the modes move in either direction with 
speeds near the predicted value. Speeds of other than this value are observed, but the 
disagreement is not serious in view of the strongly nonlinear behaviour seen in the 
simulations but not treated in the analytic work. The stationary modes seen in the 
analytic results are perhaps observed as transient structures. They may eventually 
dominate the flow at late times (Woodward et al. 1987). 

The role of the kink modes in the stability of slab jets is discussed, and it is argued 
that the stationary modes are more disruptive than the propagating modes. 

1. Introduction 
The study of supersonic fluid flows which contain shear layers is a fundamental 

problem for both mathematicians and physical scientists. The limit where the 
velocity change occurs in an infinitesimal distance, the so-called vortex sheet or slip 
surface approximation, provides a well-defined problem for mathematical analysis 
(Gerwin 1968). This approximation is also relevant to many interesting astrophysical 
situations, including the boundaries of jets which are observed to emanate from 
young stellar objects (Lada 1985), late-type stars (Hjellming & Johnston 1985), and 
active galactic nuclei (Bridle & Perley 1984). 

The supersonic slip surface has been studied using the techniques of linear stability 
analysis by Miles (1958). The well-known result is that for fluids of equal density the 
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motion is neutrally stable when the relative Mach number is greater than 2 1/2. For 
speeds below this limit the analysis predicts exponentially growing modes. 

Woodward ( 1986) has performed high-resolution numerical simulations of the 
nonlinear evolution of supersonic slip surfaces using the piecewise-parabolic method 
(PPM). These results demonstrated that a nonlinear instability occurs in flows that 
linear stability analysis predicts to have no growing modes. This instability is 
characterized by two pairs of nonlinear waves associated with a kink in the slip 
surface. Once generated these shock and rarefaction wave combinations grow nearly 
self-similarly with time. In the numerical simulations more than one kink and 
nonlinear wave system is generated. The wave systems move with different speeds 
and eventually interact. The interaction of the kinks and their nonlinear wave 
systems ultimately cause the slip surface to roll up. The final state of this instability 
is very similar to those observed by Woodward (1985) in linearly unstable slip 
surfaces, but occurs a t  a much later time. 

I n  an effort to understand the behaviour demonstrated in these simulations, 
Artola &, Majda (1987, hereinafter referred to as AM) have recently performed a 
nonlinear analytical study of the response of a supersonic slip surface (or vortex 
sheet) within a region of spatially uniform density to  an incident sound wave train 
of very small amplitude. The AM study extended the linear analysis of Miles (1957). 
AM derived the solutions for small nonlinear perturbations of the slip surface which 
indicate that nonlinear resonance occurs a t  three angles of incidence which depend 
on the Mach number of relative motion. For these angles the perturbation 
expansions are simplified. The solution of the simplified equations shows that the 
amplitudes of the reflected and transmitted waves are much larger than the incident 
wave amplitude. At resonance these reflected and transmitted waves are a shock and 
rarefaction associated with a finite-amplitude kink in the slip surface. The resonant 
modes are designated u+ and uo by AM. The u* modes move with equal and opposite 
velocities which are a function of the slip-surface Mach number, while the uo mode 
is stationary in the frame in which the fluid velocities are equal and opposite. 

These kink modes may be the characteristic nonlinear responses observed in the 
slip-surface simulations of Woodward. The goal of the present study is to solve 
numerically the same type of problem solved analytically by AM, and to  follow any 
growing modes well into the large-amplitude regime. The response of an equal- 
density, Mach-4 slip surface to  a variety of impinging nonlinear sound wave trains 
is numerically computed using PPM. A demonstration of the existence of a resonance 
in the response of the slip surface supports the AM analysis. The numerical solutions 
also complement and extend the analytical work by revealing the dynamical 
properties of the kink modes in the fully nonlinear limit. The correspondence 
between the analytical work and the simulations also demonstrates that the kinks 
seen in the earlier simulations of Woodward were not spuriously generated by 
numerical errors. 

It should be made clear that the word kink is used in this paper to  describe a 
localized small-amplitude distortion of the slip surface, and does not refer to  the 
large-scale bending of jets often seen in astrophysical contexts. For this paper the 
latter phenomenon will be referred to as large-scale bending or meandering. 
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2. Problem description 
2.1. Initial and boundary conditions 

The initial condition for all of the problems is an equilibrium slip surface. Cartesian 
geometry is used, with the slip surface defining the x-axis. The flow velocities above 
and below the slip surface are Mach 2, with no transverse velocity component. The 
density, p,  the sound speed, c, are everywhere equal to 1. The pressures on either side 
of the slip surface are equal. The fluids are assumed to be ideal gases with the ratio 
of their specific heats, y ,  equal to 5/3. Since PPM solves the Euler equations of ideal 
gas dynamics, the solution is free of scales set by, for example, viscosity or heat 
transfer. The distance unit is thus arbitrary, and the time unit is the interval required 
for a sound wave to travel one distance unit in the unperturbed gas. 

A finite train of sound waves is set up in the flow above the slip surface. These 
waves travel a t  an angle 6 toward the slip surface a t  the local velocity of sound, c. 
To produce this wave train a sinusoidal perturbation with wavelength h is applied to 
the R,  Riemann invariant. In the initial adiabatic flow R, is given by 

2c 
R,  = u+- 

y - 1 ’  

where u is the component of the initial flow velocity perpendicular to the sound wave 
fronts. The value of h used in all of the simulations is 0.125, while the amplitude of 
the R ,  perturbation varied between 1 and 50%. Since the Riemann invariants are 
advected at the local Lagrangian sound speed pc (Courant & Friedrichs 1948), this 
perturbation will generate the desired sound waves. To make a finite wave train a 
Gaussian envelope in the dimension perpendicular to the slip surface is applied to the 
perturbation. This envelope reduces the R,  perturbation at  the slip surface by a 
factor e-6 x 1/403 from its peak value. The peak value of the perturbation is located 
a distance 3.5h/cos (8) above the slip surface. 

The boundary conditions perpendicular to the slip surface are periodic, while on 
either side of the slip surface outflow boundary conditions are maintained. The 
length of the computational area along the slip surface is determined by the need to 
include one period of the incident sound wave train, and is given by hlsin (6). The 
computational area is evenly zoned to a distance of 7h/cos (8) above and below the 
slip surface, while further from the slip surface the zones exponentially increase in 
size out to a distance of 3. In the present simulations signals do not have time to 
reach this boundary ; thus the calculations are free from any signals induced by the 
outflow condition. 

Thc grid is very fine, with 3602 = 129600 zones on either side of the slip surface, 
and is symmetric about the slip surface. The size of the regularly spaced zones is 
approximately 0.003 square, which resolves well the incident sound wave with 
approximately 40 zones per wavelength. The details of the zoning and initial 
conditions for each of the simulations are listed in table 1. 

2.2. Numerical method 
The numerical method used to perform the flow simulations was a simplified version 
of the PPM, appropriate for flows with relatively weak shocks. Detailed descriptions 
of the full method are given by Colella & Woodward (1984) and Woodward (1986), 
and a comparison of the performance of PPM with several other modern methods is 
made by Woodward & Colella (1984). 

Briefly, PPM is a second-order extension of the method of Godunov (1959), and 
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has grown out of the MUSCL scheme (van Leer 1979). It is a conservative scheme 
which updates the mass, momentum, and total energy in each computational zone 
by differencing time-averaged fluxes of these quantities which have been computed 
a t  the zone interfaces. The fluxes are obtained by solving Riemann problems (or 
shock-tube problems, Courant & Friedrichs 1948) which describe the nonlinear 
interaction of two uniform states of the flow. These states are determined using 
information from the proper domains of dependence of the two families of sound 
waves which reach the interface during a time step. Within these domains of 
dependence the quantities are averaged by using interpolated parabolic represen- 
tations which have been constrained to be monotonically increasing or decreasing as 
appropriate. 

No explicit interface tracking scheme is employed in these calculations. The 
boundary between the two velocity components is kept sharp by means of the 
contact discontinuity steepener present in PPM. This steepening algorithm is 
designed to detect physical contact discontinuities by testing for sufficiently large 
density contrasts unaccompanied by pressure jumps. The internal structure of such 
flow regions is steepened beyond that given by the usual monotonized interpolation 
parabolae produced by PPM. 

The two-dimensional calculations were performed using a symmetrized sequence 
of one-dimensional calculations. These one-dimensional passes were performed using 
a Lagrangian step followed by a remapping onto the Eulerian grid. 

The version of PPM used in these calculations uses the simplified dissipation 
mechanism described by Woodward (1986). This dissipation is designed to prevent 
spurious oscillations of the post-shock flow variables, and is applied only in shocked 
regions. In these regions the interpolated internal structure of the flow variables is 
blended with lower-order approximations. A simplified linear solution to the 
Riemann problem which does not involve iteration is also used (see figure 19 of 
Woodward 1986). These simplifications reduce execution times, and are appropriate 
for flows that do not include strong shocks. In practice this restriction is not too 
severe and includes flows with Mach numbers up to approximately 8, well above the 
value of Mach 4 in the present simulations. 

3. Analytical expectations 
For the Mach-4 slip-surface configuration described above, the AM analysis 

predicts that for three angles of incidence the sound wave train will excite nonlinear 
resonant behaviour. The three kink modes are designated u* and u,. The u* kink 
modes move along the slip surface with velocities of k Tc, where r is a function of 
the Mach number, M ,  of the two fluids 

r = [1 +w- (1 + 4 ~ ~ ) 9 4  
and c is the velocity of sound in the undisturbed fluid. For a relative Ma.ch number 
of 4, or M = 2, the value of r is 0.936. The u, kink mode is stationary in the frame 
of reference of the simulations in which the fluids have equal and opposite velocities. 

The angle of incidence necessary to  excite the u- kink. mode in a Mach-4 slip 
surface is given by the condition that the phase velocity of the incident wavefronts 
along the slip surface is Tc = 0.936~. Simple geometrical considerations show that the 
resonant angle of incidence, 9, satisfies the relation 

1 
M +  0.936 ' 

sin (9) = 
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Number of 
9 Number of X uniform 

(deg.) x-zones maximum y-zones 

10.0 236 0.720 290 
15.0 158 0.483 296 
19.91 120 0.367 304 
25.0 96 0.296 316 
30.0 82 0.250 330 

y maximum 
in uniform 

zones 

0.889 
0.906 
0.931 
0.965 
1.010 

Phase 
velocity of 
wave train 
along slip 

surface 

3.76 
1.86 
0.94 
0.37 
0 

TABLE 1.  Parameters of the simulations of an incident sound wave train impinging on a Mach-4 
slip surface. The wave train waa incident at five angles, and three different amplitude trains were 
tested. For each angle the table lists the details of the zoning and the phase velocity of the wave 
fronts along the slip surface. Results of these simulations are shown in figures 1, 2, and 3. 

Thus the AM analysis predicts that at  an angle of 19.91' the incident sound wave 
train will excite the u- kink mode. Symmetry considerations show that the u, kink 
mode will be excited by an identical sound wave train incident from the opposite side 
of the slip surface. Once formed, these kink modes are predicted to grow self-similarly 
in time. The AM analysis shows that there is no nonlinear mechanism for the 
formation of the uo mode, but that if the slip surface were given an initial kink this 
mode would also grow self-similarly. 

4. Results 
4.1. 5 YO R,  perturbation amplitude 

A series of numerical simulations was performed using a Mach-4 relative velocity slip 
surface with sound wave trains incident at five different angles. One angle was equal 
to the expected resonant angle of 19.91", while the other angles were set to lo", 15", 
25", and 30" to bracket this resonant angle. The phase velocities of the incident sound 
waves along the slip surface are listed in table 1. As can be seen these velocities span 
a wide range around the resonant value. The amplitude of the sinusoidal perturbation 
in the R, Riemann invariant was set to 5 YO of the initial value in the adiabatic flow. 

These five configurations were run to time t = 2. In this time the incident sound 
wave could travel 16 wavelengths, although in the actual calculations the interaction 
with the slip surface was finished by time t e 0.75. Movies of the dynamics of each 
simulation were produced using the Gould image display system at the University of 
Minnesota. The Gould system is capable of displaying raster images at  30 frames per 
second. It is a duplicate of much of the Ultra-Speed Graphics project at the Los 
Alamos National Laboratory (Winkler et al. 1987a, b). Repeated viewings of the 
movies with complete interactive control were vital to understanding the details of 
the fluid flow. Unfortunately these movies cannot be reproduced here, and it is 
necessary to display individual snapshots of the results. 

The time evolutions of these simulations are presented in figures 1 (a)-1 (g), which 
display the five angles of incidence side by side to facilitate comparison. The figures 
are chosen to illustrate both the early and late history of the evolutions, and the 
times shown are t = 0.24, 0.36, 0.42, 0.60, 0.84, 1.04, and 2.0. In the figures the 
density is given a greyscale representation, with the higher densities appearing 
darker. In the first five figures a density of 0.29 is white, and a value of 1.98 is all 
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FIGURE 1 (a ,b) .  For caption see page 109. 
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FIGURE 1 ( c , d ) .  For caption see page 109. 
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FIGURE 1 (e,f). For caption see facing page. 
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9 = 10" 15" 19.91' 25" 30" 

FIGURE 1. A comparison of the evolution of a Mach-4 equal-density slip surface interacting with 
five different incident sound wave trains. The different evolutions of the fluid density are presented 
side by side at identical times with the incidence angle of the sound waves displayed beneath. The 
wave trains were created by imposing a 5 % sinusoidal perturbation in the R,  Riemann invariant. 
The different simulations a t  time t = 0.24 are displayed in (a), while times t = 0.36, t = 0.42, t = 
0.60, t = 0.84, t = 1.04, and t = 2.0 are shown in (&g) respectively. The minimum and maximum 
densities displayed in the greyscale transfer function are 0.29 and 1.98, respectively. Additional 
details are described in the text. 

black. For the other times the range between the maximum and minimum densities 
in each simulation was independently scaled to the full greyscale range. One period 
of the 10" simulation is displayed, and it shows 1.2, 1.6, 1.9, and 2.3 periods of the 
15", 19.91", 25", and 30" simulations, respectively. 

The simulations begin similarly for all five angles of incidence. Because of the 
Gaussian envelope the sound waves do not reach the slip surface until time t = 0.10. 
As they begin to interact with the slip surface, some of the kinetic energy of the 
system is dissipated into heat. This heated gas expands, locally broadening the fluid 
interface. The broadening is greatest where the wave crests impinge on the slip 
surface, and thus has a period of A/sin (9) along the interface. The incident waves 
have steepened into mild shocks by time t x 0.24 (figure l a ) .  After this time the slip 
surface responds differently to each incident wave train, and the rest of the 
evolutions will be presented separately. 

4.1.1. 9 = 19.91' 

The evolution of the predicted resonant angle simulation continues with the slip 
surface weakly reflecting and transmitting some of the incident waves. At time t x 
0.38 (figure l c ,  note that this is after similar behaviour is noted in the 9 = 15" 
simulation) the slip surface develops a kink located at  the trailing edge of the 
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broadened region of the slip surface. Note also that figure 1 (c) shows two kinks in the 
9 = 19.91' simulation because more than one period of the calculation is displayed. 
The kink is accompanied by shocks and rarefactions radiating into both sides of the 
slip surface. The kink and its nonlinear wave system move with a speed x 0 . 4 ~  in the 
direction of the incident waves' phase velocity. As it propagates the system grows 
nearly self-similarly until time t x 0.50, when two much smaller kinks appear in the 
slip surface. 

The subsequent evolution of the flow is rather complex, and cannot be 
demonstrated adequately with time snapshots. One of the smaller kinks is disrupted 
when it is overtaken by one of the incident wave fronts. The disruption appears to 
create a very much weaker kink system which moves in the opposite direction from 
the others. It is identical to the other kinks and nonlinear wave systems in structure 
except that i t  is inverted, i.e. reflected about both the horizontal and vertical axes. 
The velocity of this oppositely moving kink is difficult to measure because it is so 
weak; an estimate is -0.9c+O.l5c. 

Once this oppositely moving kink is generated the number of kink interactions 
increases significantly. In many such interactions oppositely moving kinks are 
created, and by time t x 0.90 the flow is dominated by collisions between oppositely 
moving kinks and their associated nonlinear wave systems. The incident sound 
waves have completed their interaction with the slip surface by time t x 0.75. 

Much of the time history of this complicated flow can be discerned from the wave 
patterns radiated into the fluids on either side of the slip surface. These patterns are 
created by the shocks and rarefactions associated with the kinks as they move into 
the ambient fluids at approximately the local sound speed. The patterns therefore 
reflect the approximate peed of advance of the slip-surface kinks. Because the fluids 
on either side of the slip surface have equal and opposite velocities the kinks move 
with different velocities relative to each fluid. I n  this simulation the radiated wave 
patterns illustrate that the dominant kink systems vary in strength and speed, while 
several weaker systems propagate in both directions along the slip surface. The speed 
of most of the kinks is directly measured to be approximately 0.8 to 1.0, but speeds 
ranging from 0.4 to 1.3 were measured. After time t x 1.0 (figures if and l g )  the 
evolution of the slip surface is chaotic, although no large-scale bending of the flow has 
occurred. This is consistent with behaviour expected for a linearly stable flow. 

4.1.2. 9 = 25' 
In the 25' simulation the phase velocity of the incident waves along the slip surface 

is 0.37, in contrast to  the predicted resonant value of 0.94. A kink begins to form in 
the slip surface at time t x 0.6 (figure 1 d )  ; however, because the phase velocity of the 
incident wave fronts is slower than the resonant value the full development of the 
kink is retarded by the applied perturbation. 

The kink and nonlinear wave system begins a rapid acceleration when the incident 
fronts complete their interaction with the slip surface and the retarding influence 
leaves. By time t x 0.9 the kink system reaches a maximum velocity of 1.25+O.lc. 
This acceleration can be discerned in the shock waves radiated from the interface 
(figure l e ) .  The kink subsequently slows to an average velocity of 0 . 9 k O . l ~  as it 
grows in strength. During the kink acceleration and deceleration several new 
oppositely moving kink and wave systems are generated. These systems are much 
weaker than the initial kink, and move with a velocity of approximately 
- 0 . 9 f 0 . 1 5 ~ .  These oppositely moving wave systems interact as in the 19.91' case, 
and a chaotic, but stable, flow ensues. 
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4.1.3. 9 = 15" 
The 15" incident wave fronts have a phase velocity of 1 .86~  along the slip surface. 

This velocity is a little greater than twice the resonant value predicted by AM. The 
incident fronts heat the gas in the interface as before, and at time t x 0.32 (just before 
figure 1 b )  a kink appears at the trailing edges of these regions. The figures show that 
this kinking occurred earlier than in the 19.91" simulation. The kink appears 
approximately equidistant between the incident wave fronts. The incident fronts 
move at a velocity faster than the kink, which is moving at  approximately 0 . 6 ~ .  At 
time t x 0.4 another weaker kink appears just ahead of an incident wave front and 
just behind the main kink system. This smaller kink moves in the same direction at 
a velocity of approximately l . l c ,  and soon nearly catches up with the initial kink 
system. As it is about to do so, however, an incident wave front impinges on the 
region. At time t x 0.54 the existing kinks are completely disrupted and at least two 
weak kinks moving in the opposite direction are created. The disrupted kinks appear 
to regenerate themselves almost immediately. 

The kinks continue to propagate and collide, heating the slip surface, which by 
time t w 1.0 (figure l f )  is several zones wide. The boundary of this heated gas is 
irregular, and periodically the kinks interact with the higher density gas protrusions 
into this layer. These protrusions also collide with each other. The result of the 
collisions is the generation of strong transient kinks that are quickly disrupted by 
new interactions. The transient kinks are stationary during their lifetimes, as 
evidenced by the symmetric shocks that they send into the gas on either side of the 
slip surface. 

4.1.4. 9 = 10" 
The phase velocity of the incident wave front in the 10" simulation is 3.70. This 

large phase velocity is supersonic with respect to both fluids. The incident sound 
waves result in a heating and broadening of the slip surface that is greater and more 
uniform than in the other cases. When the incident sound waves complete their 
interaction the slip surface kinks weakly. The kinking is clearly not directly related, 
to the perturbation supplied by the incident sound waves. 

The kink and nonlinear wave system grow in strength and by time t x 1.1 are well 
defined. The kink is generated at a velocity of approximately l . l c ,  but slows to 0 . 9 ~  
as its strength increases. Also at time t x 1.1 very weak kinks appear a t  four other 
locations along the slip surface, and one of these kinks moves in the opposite 
direction. The velocity is again approximately 0.9 f 0.1~.  The ensuing interactions 
are very similar to those observed in the other simulations, and by time t = 2 (figure 
1 g) the evolution is chaotic. 

4.1.5. 9 = 30" 

The incident wave fronts in the 30' simulation have a zero phase velocity along the 
slip surface. The result of the interaction is that the incident waves are merely 
transmitted and reflected while the slip surface remains unperturbed. Again it is not 
until after the incident waves have been completely reflected and transmitted that 
the slip surface kinks in several locations. The strongest of the kinks moves forward 
at a velocity of approximately 1.1 +O.lc, while more numerous and weaker kink 
systems move in the opposite direction at  0.9+0.lc.  The ensuing interactions 
eventually disrupt the forward-moving kink and others which follow, and as in the 
15" simulation these kink collisions produce transient, stationary kink systems. By 
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time t = 2 (figure l g )  forward- and backward-moving kink systems exist in 
approximately equal numbers, although the forward systems are somewhat stronger. 

4.2.1. 1 YO R,  perturbation amplitude 

To explore the dependence of the incident sound wave train amplitude on the above 
results, three simulations were run with the perturbation amplitude of the R, 
Riemann invariant set to  1 YO. The angles of incidence were 15", 19.91", and 25". The 
simulations were calculated to t = 1.0. The details of the zoning were the same as 
listed in table 1 for the 5 %  R, perturbation runs. Figure 2(a-c) displays the time 
evolution of these more mildly perturbed slip surfaces. The format is the same as in 
figure 1, and the times shown are t = 0.60,0.84, and 0.96. The initial conditions (not 
shown) are very similar to figure l ( e ) ,  except that the amplitude of the incident 
sound waves is approximately 5 times smaller. The density displayed ranges from 
0.28 to 2.01. 

In  the 19.91" and 15" cases behaviour similar to the 5 %  R, perturbation 
simulations is observed, except that  it occurs a t  later times. For the 15" simulations 
the 1 % perturbation caused the slip surface to kink at time t x 0.45, compared with 
t x 0.3 for the 5% R, perturbation. The corresponding times for the 19.91" case are 
t x 0.7 and t x 0.3. The 25" incidence angle, however, now shows no significant 
nonlinear development. This simulation is very similar to the early (i.e. to  time t = 
1 .O) evolution of the 30" incidence angle with the 5 % R, perturbation. The incident 
wave train is partially transmitted and reflected, and by time t = 1 .O the slip surface 
has not shown nonlinear kink development. The slip surface has, however, been 
significantly widened by the waves' passage. It might be expected that eventually 
the surface would kink as the slip surface in the 30" angle 5% R, perturbation 
simulation did once the incident sound wave train had passed. 

4.3. 50 YO R, perturbation amplitude : 8 = 30" 

The effects of increasing the amplitude of the incident sound wave train were 
explored by running the 30" incidence angle case with a very large 50 YO perturbation 
in the R, Riemann invariant. For reference, a 5 % R,  perturbation a t  this incidence 
angle did not excite the kink modes. The results of the evolution to time t = 1.0 are 
displayed in figures 3(a) and 3(b) .  The format of these figures is different than the 
others, in that the time increases from left to right within each figure. The time 
interval is At = 0.1. Figure 3(a) displays times t = 0.1 to 0.5, and figure 3(b)  
continues with times t = 0.6 to 1.0. 

With this large initial perturbation the incident sound waves steepen to strong 
shocks almost immediately. The large amplitude of the perturbation means that the 
two families of Riemann invariants can no longer be excited independently, and 
therefore a weaker wave system moving in the oppositc direction is also generated. 
When the incident wave train reaches thc slip surface the interface kinks promptly 
and violentsly. Interestingly, the kink modes excited by this strong perturbation 
move in the direction opposite to  that of the kinks created initially in the other cases. 
The amplitude of the bend generated in the slip surface is much greater than for any 
of the 5% R, perturbation simulations. 

4.4. 5% R, perturbation amplitude ; 9 = 18.67O 

I n  a very preliminary exploration of the width of the nonlinear resonance, a 
simulation with the wave train incident a t  an angle of 18.67" was performed. At this 
angle the phase velocity of the perturbation along the slip surface was I. 12c, 20 % 
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FIQURE 2. A comparison of the evolutions of a Mach-4 equal-density slip surface interacting with 
three different incident sound wave trains. In  this figure the incident wave trains are approximately 
5 times weaker than in figure 1, and were created by imposing a 1 YO sinusoidal perturbation in the 
R, Riemann invariant. The different evolutions of the fluid density are presented side by side a t  
identical times, with the incidence angle of the sound waves displayed beneath. The different 
evolutions at times t=0 .60 ,  t = 0.84, and t =0.96 are displayed in (a*) respectively. The 
minimum and maximum densities displayed in the greyscale transfer function are 0.28 and 2.01, 
respectively. Additional details are described in the text. 
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0.2 0.3 0.4 0.5 

t = 0.6 0.7 0.8 0.9 1.0 

FIGURE 3(a ,  6). The time evolution of a Mach-4 equal-density slip surface interacting with a 
strongly nonlinear train of sound waves incident at an angle of 30". Time increases from left to  right 
as shown. The incident wave train was created by imposing a 50 % sinusoidal perturbation in the 
R,  Riemann invariant. Additional details are described in the text. 



Numerical simulations of supersonic slip surfaces 115 

higher than the predicted resonant value. The amplitude of the R, perturbation was 
1 YO. The slip surface kinks very similarly to the 19.91' case. but at time t x 0.5. This 
time is actually x 0.2 earlier than in the simulation at  the predicted resonant angle. 

4.5. Higher resolution 19.91' with 5 % R, perturbation amplitude 
The broadening of the slip surface seen in the above simulations is a result of energy 
dissipation of numerical origin, since when two fluids are mixed within a 
computational zone they are given identical velocities. This velocity reassignment 
conserves momentum and total energy, and it increases the internal energy at the 
expense of the kinetic energy. To test if the broadelling of the slip surface affects the 
formation and propagation of the kink modes, the 19.91' angle of incidence case was 
calculated with twice the resolution of the above simulations. The extent of the 
problem was the same as discussed above except that the size of the computational 
area was 240 by 1440 zones. Slip-surface broadening of purely numerical origin will 
be half as wide as in the more coarsely zoned simulation. The problem was calculated 
to t = 1.74. Snapshots of the evolution are presented in figure 4(a-d). 

The evolution begins as in the lower-resolution simulation, and the slip surface 
forms a single kink and nonlinear wave system at time t x 0.32. This time is nearly 
equal to the previous time of kink formation, which was at time t x 0.38. The 
evolution of the slip surface during the period of interaction with the incident sound 
waves is very similar to that calculated on the coarser grid; however, dramatic 
differences appear later. The instability of the slip surface is much greater than in the 
coarser resolution calculation. By time t x 0.8 small-scale Kelvin-Helmholtz rolls 
appear along the interface and dominate the kink modes. This behaviour is not 
present in the coarser resolution run, even by the end of the calculation. Clearly, the 
amount of numerical viscosity strongly influences the nature of the flow. More work 
will be necessary to explore this dependence. 

5. Discussion 
The simulations presented above have explored the response of a Mach-4 equal- 

density slip surface to a variety of impirlging sound wave trains. The results show the 
existence of a resonance in the response of the slip surface as the angle of incidence 
of the sound waves is varied. This resonance was predicted by the stability analyses 
of Miles (1957) and AM, which showed that at resonance the amplitude of the 
reflected waves is much greater than the incident wave amplitude. The PPM 
simulations show that when the incident wave amplitude is 5 %  in the R, Riemann 
invariant, the 15', 19.91', and 25' incident-angle wave trains excite the nonlinear 
kink response in the slip surface, and the reflected waves are strong shocks. For the 
other two angles of incidence the slip surface does not display nonlinear behaviour 
until after the incident trains have finished their interactions. 

The width of the resonance becomes narrower as the strength of the incident sound 
waves is decreased. For a 1 % perturbation in R, the 25' incidence-angle wave train 
no longer excites the kink modes, and the sound waves are reflected without 
amplification. The waves incident at 15' still produce strongly nonlinear behaviour. 
It is possible that this perturbation excites the kink modes because the phase 
velocity of the wave fronts along the slip surface is very nearly equal to twice the 
resonant value. The possibility of harmonic excitation was not discussed by AM, 
however. The width of the resonance is at  least 20 YO in phase velocity space since the 
1 YO R, perturbation wave train at an 18.7' angle of incidence also produces kinks. 
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FIQURE 4. For caption see facing page. 
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FIGURE 4 ( a d ) .  The high-resolution time evolution of a Mach-4 equal-density slip surface 
interacting with a train of sound waves incident at an angle of 19.91'. Time increases from left to 
right as shown. The incident wave train was created by imposing a 5 % sinusoidal perturbation in 
the R, Riemann invariant. The minimum and maximum densities displayed in the greyscale 
transfer function are 0.27 and 1.99, respectively. The simulation was calculated using an extremely 
fine grid of 1440 x 240 zones, twice the resolution of the  results presented in figures 1-3. 
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The nature of the kink modes observed in the fully nonlinear simulations are both 
qualitatively and quantitatively similar to  those discussed by AM, yet some 
differences exist. The kink modes observed in these simulations move in both 
directions at the speed predicted by AM. Even kinks excited by a perturbation with 
the wrong phase velocity, such as in the 25' incidence-angle 5 YO R, simulation, will, 
once the retarding perturbation is removed, quickly reach this characteristic 
velocity. Speeds different than the predicted value are observed, however. Given the 
complex and strongly nonlinear interactions which occur in the flows this 
disagreement is not too serious, since the AM analysis included only weakly nonlinear 
effects. 

A fundamental difference between the AM kink modes and those observed in the 
simulations is that the analytical kinks are presented as simple bends in the slip 
surface. It is not clear in this picture how the slip surface returns to its initial 
orientation, as it obviously must to form an isolated distortion in an otherwise 
unperturbed interface. The answer to this distinction may also lie in the less than 
fully nonlinear nature of the analytical work. 

Only the propagating kink modes, those designated u* by AM, were clearly 
observed in these simulations. These kink modes may be related to the travelling 
wave modes discussed by Blumen, Drazin & Billings (1975), Drazin & Davey (1977), 
and Roy Choudhury & Lovelace (1984), although the latter modes are derived using 
linear stability analyses of finite-width shear layers with linear or hyperbolic tangent 
velocity profiles, instead of the vortex sheet as in the AM analysis. The relationship 
among these different analyses is presently unclear. 

A well-defined stationary uo mode was not observed in these simulations; 
however, transient stationary features with symmetric nonlinear wave systems were 
sometimes created in the interaction of the propagating kink modes. Based on the 
behaviour seen in early equal-density Mach-4 slip surfaces, it is possible that these 
stationary features will begin to dominate the flow at much later times. Such a 
feature a t  time 19 is displayed as the last frame in figure 8 of Woodward et al. (1987). 
The development of this instability may arise because a well-resolved shear layer has 
developed out of the initial slip surface as a result of the propagating kink 
interactions, and for which the analyses mentioned above are appropriate. It will be 
necessary to  evolve the simulations to much later times to test this idea. 

5.1. Implications for j e t  stability 
These simulations of the basic kink mode in supersonic slip surfaces have important 
implications for the understanding of supersonic jet stability. Woodward (1986) 
and Woodward et al. (1987) have performed PPM simulations of two-dimensional 
Mach-2 jets in Cartesian geometry. In  this geometry a jet is simply two plane-parallel 
slip surfaces, the width of the jet being the distance between the slip surfaces. The 
simulations show that the stationary kink mode generates a resonance in the large- 
scale bending or meandering properties of the jet. At Mach-2, stationary kinks 
created on opposite sides of the jet send oblique shocks into the jet interior which 
ultimately interact with the jet boundary on the opposite side. The interaction 
creates a kink in the jet wall and the shock is reflected back to the other side of the 
jet. If the width of the jet and the angle of the reflected shock are properly matched, 
the reflected shock will reinforce the initial kink, and the pattern will reinforce itself. 
The result of this resonance is the creation of a large bend in the jet. 

This bending or meandering is very disruptive in the simulations that have odd 
symmetry. In  three dimensions the analogue of this two-dimensional instability is 
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the helical mode. When the jet is given even symmetry by applying a reflecting 
boundary condition along the jet axis, the initial oblique shocks reflect at the jet axis 
via either regular or Mach reflection. The response of the jet in this case is to  pinch, 
analogous t o  the three-dimensional pinch or sausage mode. 

When the kink modes generated in the jet boundary are propagating instead of 
stationary, as in the initial evolution of a Mach-4 slip surface, the resonance 
described above will not occur. Only after the long time necessary for the stationary 
modes to dominate the flow will a large-scale bending of the jet develop. Thus the 
nature and dynamics of the basic kink modes relates simply and directly to  the 
stability of jets. 

The effect on jet stability of a resonance involving oblique shocks generated by 
finite-amplitude kinks in the jet boundaries was not fully appreciated by previous 
linear stability analyses because shocks are fundamentally nonlinear processes. The 
AM analysis is less restrictive because it includes small-amplitude nonlinear effects. 
By verifying the fundamental ideas of their analysis of the basic kink modes, the 
present numerical work will allow researchers to  proceed with confidence in 
applying analytical similar techniques to  more complex geometries in higher 
dimensions. These nonlinear analyses should permit initial explorations of the 
stability of three-dimensional cylindrical jets. They may isolate interesting regions 
of parameter space which can then be studied in the fully nonlinear limit using the 
much more time-consuming numerical simulations. These simulations are at present 
too expensive to  use in an unguided exploration of all of parameter space. 

6. Summary 
The response of a Mach-4 equal-density slip surface to  a variety of impinging 

sound wave trains was numerically simulated using PPM. The initial conditions were 
designed to match the problem analytically analysed by Artola & Majda (1987). The 
results confirm the existence of a resonance in the response of the slip surface. When 
the amplitude of the perturbation in the appropriate Riemann invariant is 5 %, the 
angles of incidence closest to  the predicted resonant angle excite nonlinear behaviour 
in the slip surface. At these angles the amplitude of the reflected waves is much 
greater (i.e. a shock) than the incident wave amplitude. The observed resonance is 
fairly broad, but as the strength of the incident waves is reduced the resonance 
narrows. 

The nature of the nonlinear kink modes observed in the simulations is similar to 
that discussed by AM. Most of the modes move in either direction with speeds near 
the predicted value. Speeds of other than this value are observed, but the 
disagreement is not serious in view of the strongly nonlinear behaviour which is seen 
in the simulations but is not treated by the AM analysis. The stationary modes 
discussed by AM are perhaps observed as transient structures. It is suggested that 
they will eventually dominate the flow at much later times. The role of the kink 
modes in the stability of slab jets is discussed, and i t  is argued that the stationary 
modes are more disruptive than the propagating kink modes. 

The above simulations were performed using the Cray 2 a t  the Minnesota 
Supercomputer Center. The authors acknowledge generous grants of computer time, 
and would like to thank the staffs of the MSC and the Minnesota Supercomputer 
Institute for help with the computations. 

Support for numerical simulations of supersonic gas dynamics by P. R. W. a t  the 
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University of Minnesota is provided by Office of Energy Research of the Department 
of Energy, under contract DE-FG02-87ER25035, by the National Science Foun- 
dation through grant AST-8611404, and by the Air Force Office of Scientific 
Research through an equipment grant AFOSR-86-0239. Support for the graphics 
equipment vital to this project was also provided by the University of Minnesota, 
Gould, Inc., and Sun Microsystems. Support for J.P. was provided by the NSF 
through grants AST83-15949 to T. W. Jones and L. Rudnick and AST86-11404 to  
P. R. Woodward. 

Movies of the above simulations can be obtained by sending a blank VHS or a inch 
U-Matic videotape with return postage to P. R. W at the Minnesota Supercomputer 
Institute. 
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